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Lecture 1 What's an inverse problem

What's an ill posed problem
Inverse to what

Problem 1 Problem2

If problem formulation of one involves the other

problem 282 are inverse to each other

A direct an inverse problem

How to decide which one is direct inverse

Can be
historical reasons Colder problem is direct problem

physical meaning
direct given present state of aphysical

system underlying physical laws

predict future shakes



inverse determine present state from future
observations

identify physical parameters
from observations

difficulty
i

declare the harder problem as the

inverse problem
be discussed

Example 1 Differentiation integration

which one is the inverse problem

A more interesting property IU poseedness
clear

consider f E Che n and a slightly
perturbed version f Cx far t S sin J
se OM new arbitrary

Then Hf fill s

Hf ft ll n

data error 8 can be arbitrarily small 2
still create an arbitrarily large error in

the result of the differentiation
The derivative does not depend continuously on the data
wir t sup norm INSTABILITY



In contrast integration of a CEOD function
is a stable problem

General phenomenon

Direct problem smoothing process

Inverse problem small data error of high
frequency creates large oscillations
in solution

Possible remedy

Differentiation revisited Numerical computation via

difference quotients

f true function ft its noisy version where

f f811 8

Suppose f E C Ed 1 forth fix 4
Taylor expansion zu f'CxItOCh

Only ft is available

f84th ft x h fCxth f G h I
he

2h 2h



4L

Two error terns Oth approximation error

O E propagated data error

For fixed 8

yep 844214 HI
y

he

propagation approximation
error large errorlonge

How to choose the discretization parameter h in an

optimal way
Choice will depend on s

CasupFphonolly

regularization theory

E g choose has h SM and search forµ
that minimizes total error

total error is Ocs 2 for footed D



Best possible fed in total error is 0643
123 T

diff quotient flex oui
this rate cannot be

improved

Typical properties of ill posed problems

Amplification of high frequency errors

Restoration of stability by using prior information
here smoothness of true function
two conflicting error terms

Choice of optimal parameters depends on a priori
information
Loss of information even under perfect circumstances



 6LLecture 2 Ill posed linear operator egns
T X Y BLT X Y Hilbertspaces

Tx y

Hadamard's criteria of well posedness

Existence for all yet there exists xeX sit Tx y

RCT Y

Uniqueness For all yell the solution is unique

orch O

Stability The solution depends continuously on

the ahaha

T t E L Y X

Example of uniqueness without existence

Lack of stability recall example of differentiation

creates serious numerical issues

Relaxed notion of solution the generalized solution

If Tx y is not solvable i e yet RCT
then search for



TEX sit LITE yl E H Tz yl V 2EX

such 5 is called least squares solution
not necessarily unique

Let Q be the orth projection of Y ou RCTT

i e Hye't Hae RCT Qy u y Yiu
known factS minimality property

HQy yd E ka yd kue RCT

and

Qy y C Rest 2

Also recall

WCT RCT
t

RCT WCT
t

TheoremL Let yeYoundxeX The following are equivalent

A Tx ay
2 HTx yll E Htt yl V 2 EX

3 T Tx T y
Proof A 2

ca
k

Il Tz y112 11 Tz QgH2t Haygrass
I HTz Qy42tHTx glf
3 Il Tx y 112



2 3 aye Rcts
8L

F xn new
c X s t

Tx Qy

Hay y112 lim HTxu y112 3 HTx YIPn soo Mass

Furthermore Cr

Il Tx y112
E H Tx QyH2tHQg ya2

3 11Tx Ong112 Il Tx y
112

Tx _Qg Tx g Qy y C RCTI

fCT
1 Tx g D

3 1 Tx g c WCT ACT
t

O Q Tx y QTx Qy Tx Qy
Tx Qy D

Corollary1 r The set of least squares solutions

L y xe X 1 Tx My
is non empty iff ye RCT ACT t

2 If ye RCT 0 RCTI then 4g is

a non empty closed a convex subset of X



9L

Proof of 1 XEUg Tx y
CWCT't Rest

y Txt y Tx y c RCT RCTJt
in a
RCT RCT t

y y tyz y c RCT y CRest

This splitting is unique Qy y and 3 xeX s t y _Tx

Qy Tx p XEL y
Turn 2

Proof of 2 convexity

Let x x cUg
Bythml T Tx My

1 Tx 1 y
Let z tx't t t x t c 0,1 arbitrary

1 Tz TT Tx't t t 1 Tx

t T yt A t T y T y
2 Elly
closedness

Let xn Elly with xn x xeX
Then Ktx yd Lying HTxn yd E HTz yd keek

xelly D



Least sq solution not necessarily unique

Possible approach Pick the one with minimal worm

Q why is this unique
convexity of 4g if ye RCT Raf

Definition Moore Penrose generalized inverse

The generalized inverse Tt is the operator with
domain D Tt RCT RCT t that maps
each yEDCTt to xelly with minimal norm

xi Tty

Corollary 2

n D Tt is dense in Y

If RCT is closed then DCTt Y
2 If RCT is closed and T 1 exists then

Tt
Ct

T 2

3 R Tt NCT RCT'T
4 Tt is linear
5 Tt is bounded iff RCT is closed

6 for ye D Tt Tty is the unique element

that is a least sq solution in WCT
t

Adl One can show that if yet DCTt then no

least sq solution of Tx y exists



e
What does 5 mean in terms of Hadamard's
criteria

In the generalized solution sense

Existence Shability

Generalized inverse restores uniqueness not necessarily
existence nor stability

Compact operators

special case of BLTs representable by SVD

K X Y compact

JR of El
K E du L un on SVD Gu unionu n X

TIO Barrie property G o

i e either the operator has finite rank or

the singular values accumulate only at zero

R K closed RCK finite dim

Recall Corollary 2 Rlk closed Kt bounded

so that dim RCK Kt is a densely
defined unbounded operator

i e compact operator equations are inherently unstable



Equation for Kt straightforward if SVD is known

Kt L on
u n 6h Un

Proof It is based on Picard's criterion

ye Kt E ky.ae
2

yet Kt Ky on R
K Lew El

x S GET un E X
Riesz Fischer n n p

El
a

Kx g Cy uns
n I Kun Cy on on

Qy
where Q ohh proj onto RCKT

Q IL ion on
her

x is least sg solution

since uuJneµ spans NCK xerckjt

D

Neko Grollayz
Kty

Earlier comment generalized solution does not

always exist



For compact operators this is characterized 13L

by Picard's criterion

only if 4j neµ
decoys fast enough

note while a o

Error components corresponding to a large
harmless

a small

get amplified

Ill posedness of compact operator equations is

characterized by decay rate of a

mild iU posedness d Ocu d
x o

otherwise severe ill posedness e.g he Olgin
q 1

Example 2 Backwards heat equation

IF lat 3 x t xelo.tl t o

u at u a it o t 0 homogDirichlet
Bcs

Backwards assuming a final temperature

f x uh 1 XE fo a
with fool flit1 0



determine initial temperature 14L
v x _u x O X C Oia

Note yn x _FEsincnx is a complete ONS inhibit

also yn rien feigne eigensystem of
d2
82 on Qa with homog

Dirichlet Bcs

Expansion for ro

Go CHI InoCnYuk XE in

with a FE vote sin cut dE

ansate for a x t
00

ult t auCt en x xeCQa t 0
hey

One can find that au Ct Cne
n't t o

fCxI uCx 1 Ing cue cent

E since dt e msincax

integral operator of the 1stkind with kernel
k x t Eu e sincut sin ax

SVD e if sinlux sinker



1
severely ill posed

Note WCK'T O Ging forts are complete ONS

RCK is dense in L2 it
D Kt
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Lecture 3 Limited data CT L

regularization
Problem 2 Limited data CT 2B

Classical CT full data

Measurements modelled as Radon transform of object density

Rf O s t f f so tot dt
D D

R

CT reconstruction inversion of Radom transform

singular values

R L2 Bz L2 E s sfx 5 Cr s2
2

Initdisk

singular values come F see bookby
Natterer2001

As m soo come

mild ill poscoheness CT reconstruction can be easily



regularized

A limited data problem

Inversion of Radon transform in 3 steps

1 Differentiation

rp ol s Is Rf LE s
at cosd siho

2 Back projection

by q x I f ro Id s dot

f s x o

Hoi f x Haff D
3 Hilbert transform inversion
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Choice 1oz 4 c it get ft

boyoh
t _2 Hqs f Cx

Inversion of Haze recovers f on a line
D

family of ID problems

Limited data

feeccaz.a.it D slice of f
Hf only known on 9 as

One possible scenario

A L z 93 C 94

Supp f

Hf measured

Define Ht Pfe a Pagan

recall Hf x ftp.v f dy
H Zar UCR

Hr Pca a Ranas

What is the spectrum 644 41



Problem of Laudian Pollak Stepien

Fw Pc w w F PE TTT
Fourier transform

Find largest eigenvalue of Itf Ew
in

commutes with 2ndorder

differential operator
its eigenfunctions are

the eigenfunctions of FiuEu
well studied problem exploit Sturm Liouvilletheory

similarly diff operators I exist sit

His 54
search for 5

based on work byKatserich inspiredby workby Maass on interior
Radar transform intuition luck magic

crucial property 5 self adjoint
Theorem 3 Hellinger Toeplitz

Let A be a linear everywhere defined operator
on a Hilbert space X with

un Auz Aus Uz V u UzEX
Then A is bounded



h MichaelReed Barry Simon
2 Barbara Macauer Elementary functional analysis

Definition A densely defined operator A out is symmetric

ft L un Aa Ay uz Vue uz CDCA

Note A self ady riff A is symmetric and

CA DCA

Unbounded self adj operators DCA E x

Note Spectrum of A unbeld very sensitive to choice of DCA

Search for Lg Is start with differential form L x of

L X d Htt x x XI 2 x IT a 4G
4

where PCH IT x aii n

ai are reg sing points

add boundary a transmission Zions to obtain self adj
realizations to

use intuition on singular functions ofHi



Supp f
1
a ay

Hyun _Kou
p n H on Kun
NBC In

1 BC

2TCs to connect
92,9 Lasky

7
an

2
t 422 ler Ix 931

in terms of SL theory
a is an interior singular point

not a standard singular 8L problem
I

sing points only at boundary
two internal problem

Next steps prove that
de Lg is purely discrete

eigenfunctions unof are complete

in L 92194

2 Lg is simple each eigenvalue has

multiplicity 1

Hilly dy Uu L net H un x



Ht 5 Hi

Theorem 4 The eigenfunctions un of together with

andoh HyunIllHrunlluccania

q HttunHakan as

frm the SVD of Hr

Hyun Kon
Hirn Kun

One can show NCHr o rs uniqueness

R Ht L2 Caz ai R Hr is dense

instability
Furthermore

theorem 5 the values 0 and I are the only
accumulation points of the sing values of tf

Hi is non compact

3 Anton 2elte Sturm Liouville theory



How severe is the ill poredness 23L

Asymptotic analysis of SVD via 5 i

Find asymptotic of eigenfunctions of
as In too in Yn dnYn

Ingredients

WKB Wentzel Kramers Brillouin approximation global asympt
Bessel solutions Jo Yo local asymptotes
Then asymptotic watching

asymptotic of sing functions of KT

use this to find asymptotic for
nsoo
1

En 0

Result

q 2e Cin At Ocn 7 n s

6 u 1 2e n
1 tofu 2 4

for a small fixed 8 0



Severe ill posedness

typical for limited data problems in CT

Regularization

General hesh Extract information stably from
an unstable problem

Recall Moore Penrose inverse best approximate solution via

t Tty
In practice y is not known exactly but only measurementyt

s t Hy y'lle sa
noise level

If Hadamard 3 is violated Tt is not continuous

Tty8 in general not a good approximation ofTy
Note Ttys might not even exist Tt Y

Regularization find approximation xs of xt s t

x8 depends out on ys
x8 Xt as s 0

How Via family of continuous operators
Ra that approximate Tt

unbounded

i e Hs y XL Rays



and xt as s so

Definition Let T X Y be a BLT between Hilbert spaces

and do C 0 a For every x e 0 let

R Y s x

be a continuous operator The family Ra
is called a regularization for Tt if for all
yEDCTt there exists a parameter choice

rule a x s ys Rtx Y Oko satisfying

lighosup 48 y y cY Hy y'll E s 141

and s t the following holds

limosup 1112
gsgs Ttyll ySEY Hy y4lEsJ o csT

For a specific y c DCF a pair Rax
is called a convergent regularization method

for solving
T
y

if 4 and 5 hold

2 components of regularization
operators By
parameter choice rule x s.gs



Theorem Bakushinskii

If a Nys yields convergent regularization method

then Tt is bounded

Possible choices 2 2 s a priori
2 48 y8 a posteriori

Theoremit If for all xD Ra is a continuous operator

then Ra is a regularization of it if
Ry 90 Tt pointwise on DLTt

In this case for all yeDCTt
a priori mule 218 exists for which

Rapa is a cow ref method for Tx y
Linear ref methods R linear operators

One can also consider nonlinear Ry fer Tt linear
e g version of conjugate gradient method

BY spectral projections of T

If T T continuously invertible

T T f f DP
and

xta f dB y 161



If RCT is not closed instability

pole at zero in 6

replace IT by family sad

xx sci dPaTy

Ra Js Ca dBiT 7

1 continuity conditions of Sali

Theorem8 For all in O let s 0 11TH R be piecewise

continuous and suppose there is a constant Cso

s t for all d E O HTM

Id Sacd E C 8

and
tim Sacd IT 9
a so

Then for all ye DCTt

lim it
0

with xt Tty
8 J Saca dB y
a posteriori rule that yields convergence

Morozov's discrepancy principle

Cd 1 dsa d xt x ra TT xt



28L
Theorem 9 Let s be as in Thin8 and fulfill 19

Furthermore let

sup 1kcal DECO 11TH be s t

S E E a 0

for some constant E o and

t sup Ira d I L O d E fo 11TH
Note if

ye Ditty
Then the discrepancy principle defined by

butyetRCT
solve for 481yd sup a 0 11TH y41 Ets
T Tx T y

which is solvable and R as in 7 form a convergent
for TEDITT

regularization method Ra a for all ye RCT

Philosophy of discrepancy principle compare residual and
error bound 8

2 examples of regularization methods

a EG
d a

0 Xcx

for operator with SVD au Union
a

truncated SVD x E JT Lys un onher

b sa d I
Ha

Xt L
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Note Ita i de GCT'T is the spectrum of

p
1 Ttx I

Q

x e f sa ca dBT ys T TtxI n

Tty
i e T THI xd yd lo

T
regularized normal egu

for operator with SVD

x E Lys un on

T
unbold replaced bybetelterm

no Tikhonov regularization
equivalent to minimization problem x m HTx y

812 121 112

Different view on regularization Theory by Miller

T 1 unbounded Hls y8 x EX Atx g'll Es

is an unbounded set

regularization I restricting set of admissible solutions
H

pm s Scs.gs CH s.gs

by assuming prior knowledge on solution

so that



diam SCs ys 0 as s so m

restriction typically as HLxH Ec

where he is densely defined with bounded inverse

e g identity or diff operator

If 1717 holds any method Ra a that guarantees

Recs.gs y e SCs.gs

is a cow regularization method

truncated Hilbert trafo knowledge on SVD Miller's approach

to prove convergenceofveg methods

noreg





 

Lecture 4 Nonlinear problems beyond

f x y F DCF CX Y

ill posedmen now lack of cont dependence on data

Nonlinear operators no spectral theory analysis ofregularization
challenging

A class of nonlinear problems
parameter estimation in PDEs

Example heat conduction in material in rapid
temperature distribution u after sniff long time
while keeping zero temp at boundary

O Cq x ou f x XEN

u O on Air

heat
Inductivity

internalheat sources

Inverse problem
Determine q from internal measurements of u or four
boundary measurements of heat flux g It

F of Ug not explicit but described through
PDE



342
General assumption

f is continuous

F is weakly sequentially closed

Xn X

Fang y
Xy xEDCF Farley

forsimplicity yeRCF

Linear problems minimum norm solution

Now x minimum norm solution H O no longerplays special

minimizes Hx x H role
t
shouldinclude
a prioriinfo

linear operators closeolness of range characterizes
stability

What if we consider linearization of nonlinear operator

In general no guaranteed connection between IU proudness

of nonlinear problem its linearization

Linear operator 1 compact injective

X infinite dim
T
n
unbounded

Nonlinear care F compact locally injective



Theorem 10 Let f be a nonlinear compact and 36
continuous operator with DCF weakly closed
Let f xt y and suppose thereexists a O

s t f x ig is uniquely solvable for all

my c RCF n Bely
If there exists a sequence Xu new CDCF with

Xu xt while Xu Xt Est

then F defined on RCF nBe y is

not continuous in y
Note If Becxt cDCF take xn xt E enn

basiselements
their xn xt en O X separable

but then xtH E

i e infinite dimensionality of DCF around it

roughly compactness local injectivity 1
DIF infinite dimensional around xt

non continuity

2 standard approaches

Tikhonov regularization
Iterative methods also for linear problems take solver

like conjugate gradient with appropriate
shopping criterion eats es parameter

choice rule



34LTikhonov regularization

HFCH yslftxllx x.KZ min xeDCF M

note by our assumptions M admits solution

but nonlinearity of F solution not unique ingeneral

just search for a solution devote by xd

In general non convex get stuck in hoc minime

Theorem M Let y EY Hgs ykes and let acs be s t

x s 0 as 8 so

s 0 as s so

Then every sequence xx where 0 q 4
and he is a solution of CM
has a convergent subsequence

The limit of every convergent subsequence is an

x minimum norm solution

If the x minimum norm solution is unique
then

him xt
g so

Note on a posteriori parameter choice rules

solving HFC y'll CS is problematic
only solvable under restrictive assumptions
need complicated a posteriori strategies

high computational effort



Iterative methods stop at where 345

Hgs F x HE Is a y f yet t k k

easy to implement

A nonlinear inverse problem Phase retrieval
Hilbertspace X
measurement system a yea CX

Task reconstruct signal f from Kf 4 71 aT

up to a global factor test

distlf tiffs f tfd

Gabor phase retrieval

X L2 IR

4ft e
rt

yd My y G y D

Time freqshift of 4
Consider best case scenario d E

i.e reconstruct f from Chef Kit't
any e

hefty filmy

Define de 1442115 ICHI IRI
f theft

forward operator



Injectivity
36L

Fundamental formula

F Ngfr x y Vgftyit.vggl y.tl
For y Gaussian Vyy has no zeroes

simple computation Yy is a ZD Gaussian

given theft one can recover Vgf uniquely

If F Neff x yI Vqff y x Kyl y x
F lVyfzP x g Vqfzfy.ir 44C y X

and Ivyf I theft
then Cgf Vhf Vyy O

Vegf Vfzfz

One can show take LD Fts

Vp fz Vqfz f _if for some test

Note formula not very useful in practice eep decay of Vice

Continuous inverse

General property of phase retrieval when measurement

system is frame



Ay injective Aft is continuous on Rede
37L

see A Grohs SIAM MathAn 1

However in practice instabilities do occur

Another general property of PR when dimX

y
no uniform continuity of Aft

fundamental dittlfaifd Hedy fn dylfdllcyazytpdistcfy.fr
differenceto
linearcase

no such o exists seeCD

Quantification for Gabor cease

fat Tay Tay

fo Tay Tay
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Theorem A yous 19 There is auniform constant C O s t

f a O V ke 0 Tk

freighting fet tf e Hear 3 Ce 1114fett thefelkwn.ua

exponential degradation ofstability
Severe in some sense

Regularization

Minimizer of hdelf UltrazyttHfN
measureddata

Classical penalties e g L2 Besar nom

modulation spece worm

fatty MfaH

do not resolve occuring instability

Less classical approach
atoll functions see A Daubedies Grohs Yiu

change notion of solution give up on global

phase factor stability restored

relies heavily on holomorply property ofVyf
Bargmann trap
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Image classification


