

invesse: · olekomine present state from future
observations
· iolentify physical parameters
from observations
· difficulty
oleclare the "harder" problem as the
inverse problem
$$\int_{+0}^{+0} be observed...$$

Example 1: Differentiation e integration
Which one is the inverse problem?
A more interesting property: ill-poseduess
(s clear)
Consider $\int f \in C^{2}[0,1]$ and a sliphtly
perhabed version $\int_{1}^{0} (\kappa) = f(\kappa) + 5 \sin \frac{n\kappa}{s}$
[$s \in (0,1)$, nen arbitrary]
Then $\|if - \int_{1}^{0} \|_{\infty} = s$
 $\|j' - (\int_{1}^{0})' \|_{\infty} = n$
 \Rightarrow data error s can be arbitrarily small s
shill create an arbitrarily large error in

the result (of the differentiation) The derivative does not depend continuously on the data (w.r.t. sup norm) ~> INSTABILITY

Possible remeely?

Differentiation revisited: Numerical computation via
difference quotients
f true function, fs its noisy version, where
$$\|f-f^{s}\| \leq s$$

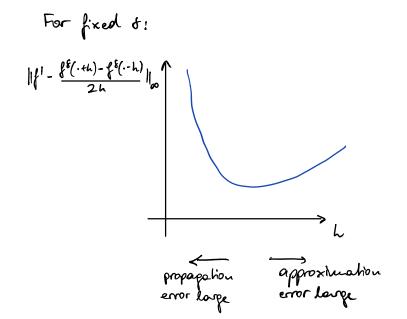
Suppose
$$f \in C^2[0, 1]$$

Taylor expansion: $\frac{f(x+h) - f(x-h)}{2h} = f'(x) + O(h)$

Only
$$\int \delta$$
 is available:

$$\frac{\int \delta(x+h) - \int \delta(x-h)}{2h} \sim \frac{\int (x+h) - \int (x-h)}{2h} + \frac{\delta}{h}$$

Two error terms:
$$O(h)$$
 approximation error $O(\frac{s}{h})$ propagated data error



<u>[4</u>

Lechure 2 Ill-posed linear greator egns $T: X \rightarrow Y$ BLT X,Y Hilbert years Tx = yHadamard's orderia of well-posedness: Existence: For all yeY, thus exists $x \in X$ s.t. Tx = y R(T) = YUniqueness: For all $y \in Y$, the solution is unique: $N(T) = \{0\}$ Stato'lity: The valuation depends continuourly on the data:

$$T^{-1} \in \mathcal{L}(Y, X)$$

Lack of Nability: recall example of differentiation
Li creates serious numerical issues
Relaxed notion of solution: the peneralized solution
If
$$Tx=y$$
 is not solvable, i.e. $y \notin Q(T)$,
then : search for

$$\overline{x} \in X$$
 s.t. $\|T\overline{x}-y\| \le \|T\overline{z}-y\| \quad \forall \quad z \in X$.
such \overline{x} is called least-squares volution
[not necessarily unique!]
Let Q be the orth. projection of Y on $\overline{R(T)}$
i.e. $\forall y \in Y, \forall u \in \overline{R(T)} : \langle Qy_1 u \rangle_y = \langle y_1 u \rangle_y$
Known facts: minimality property
 $\|Qy-y\| \le \|u-y\| \quad \forall u \in \overline{R(T)}$

and

$$Q_{y}-y \in Q(T)^{\perp}$$
 (1)

Also recell:

$$V(T) = R(T^{*})^{\perp}, \quad \overline{R(T)} = N(T^{*})^{\perp}$$

$$\underline{Theorem 1}: \quad \text{Let } y \in Y \text{ and } x \in X. \quad \text{The following are equivalent:}$$

$$A_{,)} \quad T_{x} = Q_{y}$$

$$2_{,)} \quad \|T_{x} - y\| \leq \|T_{\overline{x}} - y\| \quad \forall z \in X$$

$$3_{,)} \quad T^{*}T_{x} = T^{*}y.$$

$$Proof: \quad A_{,} \Rightarrow 2_{,}$$

$$\|T_{\overline{x}} - y\|^{2} = \int ||T_{\overline{x}} - Q_{y}||^{2} + ||Q_{y} - y||^{2}$$

$$= \int ||T_{\overline{x}} - Q_{y}||^{2} + ||T_{x} - y||^{2}$$

$$= \int ||T_{x} - y||^{2}$$

Ð

2.
$$\Rightarrow$$
 3., $Qy \in \overline{R(T)}$
 \Rightarrow $\exists (x_n)_{n\in\mathbb{N}} \subset X \text{ s.t.}$
 $Tx_n \xrightarrow{n\to\infty} Qy$
 $\Rightarrow ||Qy-y||^2 = \lim_{n\to\infty} ||Tx_n-y||^2 \Rightarrow ||Tx-y||^2$

Furthemore, $\|Tx - y\|^{2} = \|Tx - Qy\|^{2} + \|Qy - y\|^{2}$ $\geq \|T \times - Q_{\zeta}\|^{2} + \|T \times - \gamma\|^{2}$ $\Rightarrow Tx = Qy \qquad \Rightarrow Tx - y = Qy - y \in R(T)^{1}$ = J(T*) \Rightarrow $T^*(T_x - y) = 0.$ $T_{X-y} \in \mathcal{N}(T^*) = \mathcal{R}(T)^{\perp}$ 3., ⇒ 1.) => O = Q(Tx - y) = QTx - Qy = Tx - Qy=> Tx= Qy. D Corollary 1: 1. The set of least-squares solutions $L(y) := \int x e \chi : T^* T_x = T^* y^2$ is non-empty iff $y \in \mathbb{R}(T) \oplus \mathbb{R}(T)^{\perp}$. 2.) If $y \in \mathbb{R}(T) \oplus \mathbb{R}(T)^{1}$, then L(g) is a non-empty, closed & convex subset of X.

Least-sq. solution: not (necessarily) unique [10
Possible approach: Pick the one with minimal norm
Q: Why is this unique?
Lo convexity of
$$L(y)$$
 (if $y \in R(T) \oplus R(T)^2$)
Definition [Moore - Remose generalized inverse]:
The generalized inverse T^+ is the operator with
domain $\mathfrak{D}(T^+) = R(T) \oplus R(T)^2$ that maps
each $y \in \mathfrak{D}(T^+)$ to $x \in L(y)$ with minimal norm
 $(x = T^+y)$.
Corollary 2:

1)
$$\mathcal{D}(T^{+})$$
 is danse in Y
If $\mathcal{R}(T)$ is danse in Y
 $2 \cap \mathcal{I}_{f} \mathcal{R}(T)$ is closed and T^{-1} exists, then
 $T^{+}_{\mathcal{R}(T)} = T^{-1}$.
3., $\mathcal{R}(T^{+}) = \mathcal{N}(T)^{1} \quad (= \overline{\mathcal{R}(T^{+})})$
4., T^{+} is linear
5.) T^{+} is linear
5.) T^{+} is bounded iff $\mathcal{R}(T)$ is closed
6., For $y \in \mathcal{D}(T^{+})$, $T^{+}y$ is the unique element
that is a least-sq. solution in $\mathcal{N}(T)^{+}$.
Ad 1., One can show that if $y \notin \mathcal{D}(T^{+})$, then no
 $leest-sq.$ solution of $Tx=y$ exists!

Compart operators special case of BLTS ~ representable by SKD K: X-> Y compact $K = \sum_{n=1}^{\infty} c_n \langle \cdot, u_n \rangle_{X} \sigma_n \qquad \text{SVD:} \left(c_{n} \cdot u_{n} \sigma_n \right)$ Barric property". En ->0 i.e. eithes the operator has finite rank or the sugular values accumulate (only!) at zero. R(K) dosed <=> R(K) finike-dim. Recall Corollory 2: R(K) closed (Kt bounded so that dim R(K) = $\infty \implies K^+$ is a densely defined unbounded operator i.e. compact operator equations are inherently unstable.

Equation for
$$k^{+}$$
? Strangletforward if SVD is known:

$$k^{+} = \sum_{n=1}^{\infty} \frac{\langle \cdot, \forall n \rangle}{e_{n}^{*}} U_{n} \qquad (2)$$

Proof: It is bared on Picard's criterion:

$$y \in \mathcal{D}(k^{+}) \iff \sum_{n=1}^{\infty} \frac{|\langle y_{1} \sigma_{n} \rangle|^{2}}{|\varphi_{n}|^{2}} < \infty \qquad (3)$$

$$y \in \mathcal{D}(k^{+}) \implies (\frac{|\langle y_{1} \sigma_{n} \rangle|}{|\varphi_{n}|}) \in \mathcal{L}^{2}$$

$$= \sum_{n=1}^{\infty} \langle y_{1} \sigma_{n} \rangle = (\frac{|\langle y_{1} \sigma_{n} \rangle|}{|\varphi_{n}|}) + (\sum_{n=1}^{\infty} |\varphi_{n}|^{2}) + \sum_{n=1}^{\infty} \langle y_{1} \sigma_{n} \rangle = \sum_{n=1}^{\infty} \langle y_{1} \sigma_{n$$

$$\Rightarrow Kx = \int_{n=1}^{\infty} \frac{\langle y, v_n \rangle}{\sigma_n} Ku_n = \int_{n=1}^{\infty} \langle y, v_n \rangle v_n$$
where Q : orth. proj. onto $\overline{R(k)}$

$$Q:= \int_{n=1}^{\infty} \langle y, v_n \rangle v_n$$

h2

For compact operators, this is dearacterized
$$\frac{13}{13}$$

by Picard's criterion:
only if $\left\{\frac{\langle y, v_n \rangle}{\sigma_n}\right\}_{n \in \mathbb{N}}$ decays fast enough
(note: while $\sigma_n \stackrel{n \to \infty}{\to} 0$!)

Error componends corresponding to 2 large
 barnless
 ther components corresponding to 3 mill
 get amplified !

Example 2: Backwards heat equation

with $f(0) = f(\pi) = 0$

$$\frac{1}{2t}(x,t) = \frac{2\pi}{2x^2}(x,t) \qquad x \in [0,\pi], t \ge 0$$

$$u(0,t) = u(\pi,t) = 0, t \ge 0 \qquad (homog. Dirichlet)$$

$$Bcs)$$

$$Bachwards': assuming a final durperature
$$f(x) := u(x, 1), x \in [0,\pi]$$$$

determine initial temperature
$$\begin{array}{ll} (\Lambda Y) \\ (X, Y) := u(X, O), \quad X \in [O_1 \pi] \end{array} \\ \text{Noke:} \quad (\varphi_n(X)) := \sqrt{\frac{2}{\pi}} \sin(nX) \quad \text{is a complete ONS} \quad \inf L^2[O_1 \pi] \\ also \quad (\varphi_n^{H} = -n^2 \varphi_n) \implies [(\varphi_n)]_{n \in N} \quad eigensystem \quad of \\ \frac{d^2}{dX^2} \quad On [O, \pi] \quad \text{with homog.} \\ \text{Dirichlat BCs} \\ \text{Expansion for } (\sigma_0) : \\ (\sigma_0(X)) = \sum_{n=1}^{\infty} c_n (\varphi_n(X)), \quad X \in [O, \pi] \\ \text{with } c_n = \sqrt{\frac{2}{\pi}} \int_{0}^{\pi} (\sigma_0(T)) \sin(nT) dT \\ \implies \text{ansate for } u(X, t): \\ u(X, t) := \sum_{n=1}^{\infty} a_n(t) q_n(X), \quad X \in [O, \pi], \quad t \ge 0. \end{cases} \\ \text{Gue can final fluat } a_n(t) = C_n e^{-n^2 t}, \quad t \ge 0 \\ \cong \int_{0}^{\infty} (X) = u(X, 1) = \sum_{n=1}^{\infty} c_n e^{-n^2} q_n(X) \\ = \frac{2}{\pi} \sum_{n=1}^{\infty} \int_{0}^{\pi} (\sigma_0(T)) \sin(nT) dT e^{-n^2 t} \sin(nX). \end{cases} \\ \xrightarrow{\text{vistepal queator of } ke 1^{\text{thind with kensel}} \\ k(X, T) := \frac{2}{\pi} \sum_{n=1}^{\infty} e^{-n^2} \sin(nT) \sin(nT) \int_{0}^{2} \sin(nX) \end{pmatrix}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1}{2}$$
Note: Sing forts are complete ONS
$$\xrightarrow{=} \mathbb{R}(K) \quad \text{is obsure in } L^{2}[0,\overline{\nu}]$$

$$= \mathbb{D}(K^{+})$$

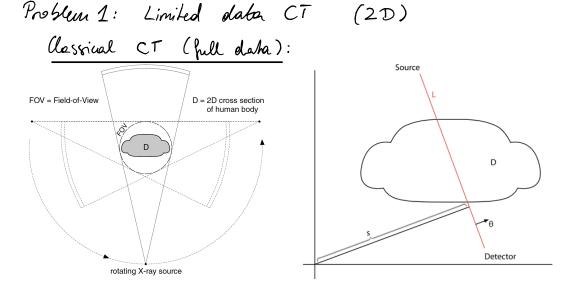
$$\xrightarrow{=} D(K^{+})$$

$$\xrightarrow{=} D(K^{+})$$

$$\xrightarrow{=} e^{2n^{2}} |f_{n}|^{2} < \infty$$
where
$$f_{n} := \sqrt{\frac{2}{\pi}} \int_{\pi} f(\tau) \sin(n\tau) d\tau$$

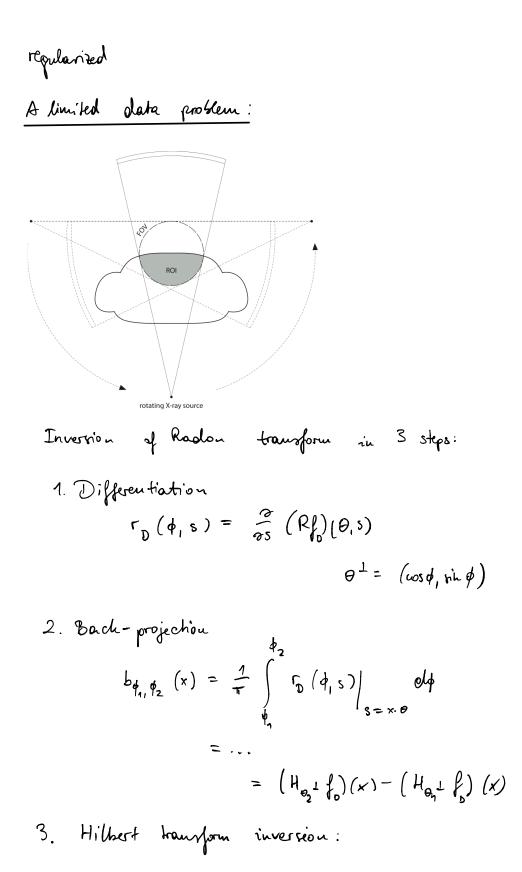
Theorem 2 [Spectral theorem - p. v.m. form]
There is a 1-to-1 correspondence between (bdd) self-adj.

$$P_{R} = \{p_{R}\} = \{p_{R}\} = \{p_{R}(A)\}$$



Measurements modelled as Radon transform of object density: $\begin{pmatrix} \mathbb{Q}f_{D} \\ 0 \end{pmatrix} \begin{pmatrix} \theta_{1} \\ s \end{pmatrix} = \int_{\mathbb{R}} \begin{cases} (s\theta + t\theta^{\perp}) \\ s\theta \end{pmatrix} dt \\ \mathbb{R} \\ CT reconstruction : invession of Radon transform$ ~ singular values ? $R: L^{2} (B_{2}) \rightarrow L^{2} ([-1, 1] \times S^{1}, (1 - s^{2})^{-1/2}) \\ \int_{unt}^{1} disk \\ singular values singular singular values sing = \frac{21\pi}{1m+2} (see book by Natherer, 2001) \\ As m - so sing \sim \frac{1}{1m}$

~ mild ill-porcolness ~ CT reconstruction can be easily



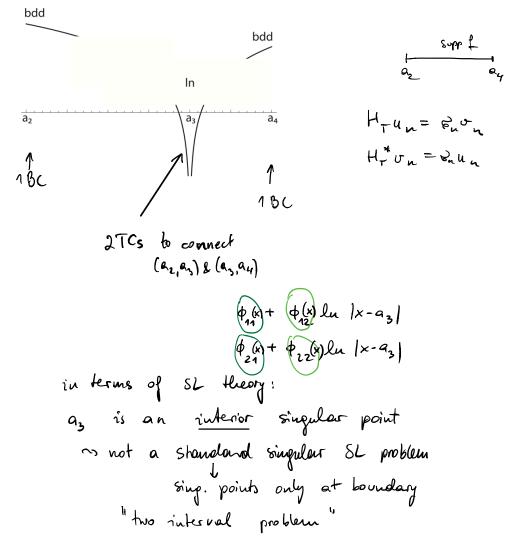
Choice
$$\phi_2 = \phi_1 + \pi \Rightarrow \phi_2^{\perp} = -\phi_1^{\perp}$$

 $\Rightarrow \quad \phi_{1, \phi_1 + \pi} \quad (x) = 2 (H_{\phi_2^{\perp}} f_2)(x)$
Inversion of $H_{\phi_2^{\perp}}$ recovers f_2 on a line
 \longrightarrow family of 1D problems

Limited data: fel²([a₂, a₁]): 1) slice of fo Hf anly known on [a1, a3] oue possible scenario: 9, < 92 < 93 < 94 supp f Hf measured Define H := P [a, a] H P [a2, a4] recall $(Hf)(x) = \frac{2}{\pi} p.x. \left(\frac{f(y)}{y-x} dy\right)$ $H: (^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ $H_{r}^{*} = - \mathcal{P}_{\left[a_{2}, a_{4}\right]} H \mathcal{P}_{\left[a_{1}, a_{3}\right]}$ What is the spectrum & (H_T+H_T)?

Problem of Landon-Pollak-Slepian

$$\begin{aligned}
\overline{F}_{U} &:= \overline{\Gamma}_{E-U_{1}U_{2}} \stackrel{\sim}{J} \stackrel{\sim}{P}_{E-T_{1}T_{1}} \\
Farrier houngtonn
\end{aligned}$$
Find largert eigenvalue of $\underbrace{T_{TW}}_{TW} \stackrel{\sim}{T_{TW}} \stackrel{\sim}{T_{TU}} \\
commutes with 2^{nd} orders
\end{aligned}$
differential gravetor
 \rightarrow it eigenfunctions are
the experimentions are
the experimentions of $\underbrace{S_{TU}}_{TU} \stackrel{\sim}{T_{TU}} \stackrel{\sim}$



$$H_{T}L_{S} = L_{S}H_{T}$$

Theorem 4. The eigenfunctions
$$u_n$$
 of L_3 , together with
 $\sigma_n := H_T u_n / || H_T u_n ||_{L^2([a_1, a_3])}$ and
 $G_n := || H_T u_n ||_{L^2([a_1, a_3])}$ form the SVD of H_T :
 $H_T u_n = G_n \sigma_n$
 $H_T^* \sigma_n = F_n u_n$.
One can show: $N(H_T) = \{O\}$ ~5 uniqueness
 $R(H_T) \neq L^2([a_2, a_4]), R(H_T)$ is dense
~ instaboility

Furthermore :

[3] Anton Zebt, Shurm-Liouville Keory

$$\vec{e}_{n} = 2e^{-c_{1}n} \cdot (1 + O(n^{-N_{2}+s})), n \to \infty$$

 $\vec{e}_{-n} = 1 - 2e^{-c_{2}n} (1 + O(n^{-N_{2}+s}))$
for a small fixed \$>0.

Recell Moore-Penrose inverse: best-approximate solution via $x^{+} = T^{+}y$

In practice: y is not known exactly, but only measurement
$$y^{\delta}$$

s.t. $||y-y^{\delta}|| \leq s$
"noise level"

If Hadramard 3., is violated: It is not continuous!

$$T^{4}y^{\delta}$$
: (in general) not a good approximation of $T^{+}y$
Note: $T^{+}y^{\delta}$ might not even exist $(D(T^{+}) \neq Y)$
Regularization: find approximation x^{δ} of x^{+} s.t.
 $\cdot x^{\delta}$ depends cont. on y^{δ}
 $\cdot x^{\delta} \rightarrow x^{+}$ as $\delta \rightarrow 0$
How? Via family of continuous operators
 $\{R_{\infty}\}$ that approximate T^{+}
 $N_{onbounded}$
i.e. $\alpha = \alpha(\delta, y^{\delta})$, $X_{\alpha}^{\delta} := R_{\alpha} y^{\delta}$

and
$$x_{x}^{s} \rightarrow x^{\dagger}$$
 as $s \rightarrow 0$.

Definition. Let
$$T: X \rightarrow Y$$
 be a BLT between Hilbert spaces
and $\alpha_{\circ} \in (0, \infty]$. For every $\alpha \in (0, \infty)$, let
 $R_{\alpha}: Y \rightarrow X$
be a continuous operator. The family $\{R_{\alpha}\}$
is called a regularization for T^{+} if for all
 $y \in D(T^{+})$ there exists a parameter duoice
rule $\alpha = \alpha (s_{1}y^{s}): R^{+} \times Y \rightarrow (0, \infty)$ satisfying
 $\lim_{s \rightarrow 0} \sup \{\alpha(s_{1}y^{s}): y^{s} \in Y, \|y - y^{s}\| \le s\} = D$ (4)
and s.t. the following holds:
 $\lim_{s \rightarrow 0} \sup \{\|R_{\alpha(s_{1}y^{s})}y^{s} - T^{+}y\|: y^{s} \in Y, \|y - y^{s}\| \le s\} = D$.(5)
For a specific $y \in D(T^{+})$, a pair $(R_{\infty, \infty})$
is called a (convergent) regularization method
for volving
 $Tx = y$
if (4) and (5) hold.

[25

Theorem ([Bakushirshii]:
If
$$d = \alpha(y^{s})$$
 yidds convergent regularization method,
then T^t is bounded.
Possible divias: $d = \alpha(s)$ "a-priori"
Theorem 7: If for all $\alpha > 0$, R_{k} is a continuous operator,
then { R_{k} } is a regularization of T^t if
 $R_{k} = \sum_{i=0}^{\infty} T^{t}$ pointwik on $Q(T^{t})$.
In this case, for all $y \in D(T^{t})$:
a-priori rule $\alpha(s)$ exists for which
($R_{k} | \alpha)$ is a conv. rep. method for $T_{k=y}$.
Linear rep. methods: R_{k} linear operators
[One can also counsider variations of T^t linear
 $e.g.$, version of canjugate gradient method].
(R_{k}] spectral projections of T^t
If T^{*T} continuously investible:
 $(T^{+T})^{-1} = \int f dR_{k}$
and
 $x^{+} = \int f(x) dR_{k} T^{*}y$ (6)

If R(T) is not closed: invhability

$$\sim$$
 poole at zero in (G)
 \sim replace $\frac{1}{\lambda}$ by family $\{S_{\alpha}(\lambda)\}$
 $X_{\alpha} := \int S_{\alpha}(\lambda) dP_{\lambda} T^{*}y$
 $R_{\alpha} := \int S_{\alpha}(\lambda) dP_{\lambda} T^{*}$ (7)

+ continuity conditions of $S_{\alpha}(\lambda)$.

Theorem 8. For all
$$\alpha > 0$$
, let $s_{\alpha} : [0, ||T||^2] \rightarrow \mathbb{R}$ be piecewive
continuous and suppose there is a constant (-0)
s.t. for all $\lambda \in (0, ||T||^2]$
 $|\lambda S_{\alpha}(\lambda)| \leq C$ (8)
and
 $\lim_{\alpha \to 0} S_{\alpha}(\lambda) = \frac{1}{\lambda}$ (9)
Then, for all $y \in D(T^+)$
 $\lim_{\alpha \to 0} x_{\alpha} = x^+$.
with $x^{\dagger} = T^{\dagger}y$.
 $x_{\alpha}^{\dagger} := \int S_{\alpha}(\lambda) dP_{\lambda} T^{\dagger}y^{\delta}$
 \circ -posktion rule that yields convergence:
Morotov's discrepance enjoyciele

$$\Gamma_{\alpha}(\lambda) := 1 - \lambda S_{\alpha}(\lambda) \qquad \left[x^{+} - x_{\alpha} = \Gamma_{\alpha}(T^{*}T)x^{+} \right]$$

Theorem 9. Let
$$\int_{\mathcal{X}}$$
 be as in Thin 8 and fulfill (6) $\delta(9)$.
Furthermore, let
 $\int_{\mathcal{X}} := \sup \left\{ | \int_{\mathcal{X}} (\Lambda) | : \lambda \in [0, |T|^2] \right\}$ be s.t.
 $\int_{\mathcal{X}} \leq \frac{\varepsilon}{\alpha}$, $\alpha > 0$
for rome constant $\varepsilon > 0$ and
 $\tau > \sup \left\{ | \Gamma_{\alpha}(\Lambda) | : \alpha > 0, \lambda \in [0, |T|^2] \right\}$
hok: If
 $\int_{\mathcal{Y}} \in D(T^4)$, Then, the discrepancy principle defined by
but y d R(T):
solve for
 $TT = T^4$
which is solved, and R_{χ} as in (7) form a convergent
for 'JCD(T').
Philosophy of discrepancy principle : compare revolued and
 ε roop bound s
 $\frac{2 \ examples \ of regularization methods:}{0 \ \lambda < \alpha}$
 \sim for operator with SVD ($\varepsilon_{\alpha,i} U_{n_1} \sigma_n$):
truncated SVD $\chi_{\lambda}^{\delta} = \sum_{\alpha=1}^{\infty} \frac{1}{\varepsilon_{\alpha}} \langle y_{1}, u_{\alpha} \rangle \sigma_{\alpha}$
 $\delta_{\alpha}(\Lambda) := \frac{1}{\Lambda + \alpha}$

Note:
$$\int \lambda + \alpha : \lambda \in \mathcal{C}(T^{+}T)$$
 is the spectrum of
 a^{7} $T^{+}T + \alpha I$
 a^{7} $z^{+}T + \alpha I$
 a^{7} $z^{+} = \int s_{\alpha}(\Lambda) dP_{\lambda}T^{+}y^{5} = (T^{+}T + \alpha I)^{-1}T^{+}y^{5}$.
i.e. $(T^{+}T + \alpha I) \times a^{5} = T^{+}y^{5}$ (10)
 f^{-1} regularized normal eqn

m for openator with SVD:

$$\chi_{x}^{\delta} = \sum_{n=1}^{\infty} \frac{\varepsilon_{n}}{\varepsilon_{n}^{2} + \varepsilon} \langle y^{\delta}, u_{n} \rangle \sigma_{n}$$
.
 1
 $\frac{1}{\varepsilon_{n}^{2}}$ unbold, replaced by bold form

Different view on repularization: Theory by Miller

$$T^{-1}$$
 unbounded $\Rightarrow H(s, y^s) := \{x \in X : \|Tx - y^s\| \le s\}$
is an unbounded set
repularization \cong restricting set of admissible solutions:
 $S(s, y^s) \subset H(s, y^s)$
by assuming prior knowledge on valuation
so that

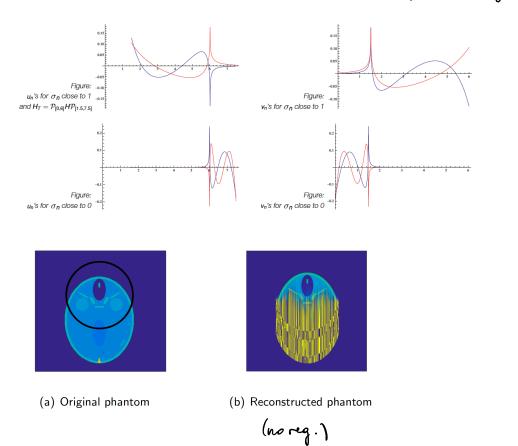
(29

olian
$$S(s, y^s) \rightarrow 0$$
 as $s \rightarrow 0$. (11)

requichion typically as
$$||L \times ||_{X} \leq c$$

where L is densely defined with bounded inverse
e.g. identity or diff. operator
If (11) holds, any method ($R_{\alpha, \alpha}$) that gravantees
 $R_{\kappa(\delta, y^{\delta})} y^{\delta} \in S(\delta, y^{\delta})$

truncated Hilbert trafo: knowledge an SVD + Milles's approach to prove convergence of reg. methods



(a) Original phantom

(c) Tikhonov reg.

(b) Field of view

(d) TV reg.

Lecture 4 : Nonlinear problems & beyond

 $F(x) = \gamma , F: D(F) \in X \rightarrow Y$ ill-posedness now: lack of cont. dependence on data Nonlinear operators: no spectral theory \rightarrow analysis of repularization challenping! A class of nonlinear problems: parametes extrimation in PDEs Example: heat conduction in material in $D \subset \mathbb{R}^3$ temperature distribution u after suff.long time while keeping zero temp. at boundary: $-\nabla \cdot (q(x) \circ u) = f(x), x \in D$ u = 0 on ∂D heat conductivity intrud head sources

Inverse problem:

Determine q from internal measurements of a or four
boundary measurements of heat flux
$$q \frac{34}{2\pi}$$
?
F: $q \mapsto u_q$ not explicit but described through
PDE.

General annumption:
• F is continuous
• F is weakly sequentially closed:

$$x_n \rightarrow x \quad in X = x \in \mathcal{D}(F) \& F(x) = y$$

 $F(x_n) \rightarrow y \quad in Y = x \in \mathcal{D}(F) \& F(x) = y$
• for simplicity: $y \in \mathcal{R}(F)$

What if we consider linearization of nonlinear operator?

Linear operator: T compact + injective

Nonlineas case: F compart & locally injective:

Theorem 10. Let F be a nonlinear compact and
continuous operator with
$$\mathcal{P}(F)$$
 weakly closed.
Let $F(x^{\dagger}) = y$ and suppox there exists $\varepsilon = 0$
s.t. $F(x) = \hat{y}$ is uniquely volvable for all
 $\hat{y} \in \mathcal{R}(F) \cap \mathcal{B}_{\varepsilon}(y)$.
If there exists a sequence $\{x_n\}_{n \in \mathbb{N}} \subset \mathcal{D}(F)$ with
 $x_n \longrightarrow x^{\dagger}$ while $x_n \nleftrightarrow x^{\dagger}$, (4)
then F^{-1} (defined on $\mathcal{R}(F) \cap \mathcal{B}_{\varepsilon}(y_1)$) is
not continuous in y.
Note: If $\mathcal{B}_{\varepsilon}(x^{\dagger}) \subset \mathcal{D}(F)$: take $x_n = x^{\dagger} + \varepsilon \cdot e_n$
then $x_n \longrightarrow x^{\dagger}$ ($e_n \longrightarrow 0$) (X sequence)
but $||x_n - x^{\dagger}|| = \varepsilon$.
i.e. $(*) \sim infinite$ -elimentianelity of $\mathcal{D}(F)$ around x^{\dagger}
 \Rightarrow roughly: compactners + local injectivity +
" $\mathcal{D}(F)$ infinite olimentianelity around x^{\dagger}

(33

$$\frac{34}{\|F(x)-y^{k}\|^{2}+\alpha\|x-x^{x}\|^{2}} \longrightarrow \min, x \in \mathcal{D}(F) \quad (11)$$

$$[nole: by our assumptions, (11) admits colution
but nonlinearity of F => solution not unique in purched]
$$\Rightarrow just search for a solution, denote by x^{k}_{a}$$

$$[In period non-convex \rightarrow pet shick in loc. minime]$$
Theorem M. Let $y^{3} \in Y$, $\|y^{3}-y\| \leq S$ and let $\alpha(s)$ be s.t.
$$\alpha(S) \rightarrow O \text{ as } S \rightarrow O,$$

$$s^{2}_{\alpha}(s) \rightarrow O \text{ as } S \rightarrow O.$$
Then, every sequence $\{x^{sk}_{a}\}$ where $s_{k} \rightarrow 0, x_{k}:=\alpha(k)$
and x^{sk}_{a} is a solution of (11) ,
has a convergent subsequence.
The limit of every convergent subsequence is an
$$x^{*}-minimum-norm solution.$$
If the $x^{*}-minimum-norm solution x^{*}$ is conjuc,
then
$$\lim_{t\to 0} x^{st}_{\alpha(s)} = x^{*}.$$$$

Iterative methode: stop at
$$k_*$$
 where:
 $\|g^i - F(x_{k_*}^i)\| < \tau_6 < \|g^6 - F(x_{k}^6)\|$, $k < k_*$
earry to implement
A randinear inverse problem: Phase retrieval
Hilbert space X
measurement cyclem $(q_{\lambda})_{\lambda \in \Lambda} = X$
Task: reconstruct signal f from $(|\langle f_i, q_{\lambda} \chi|)_{\lambda \in \Lambda}$.
 γ to a global factor $\tau \in S^1$
 $dist(\{f_i\}_2) := \inf_{\tau \in S^1} \|f_i - \tau_{k_*}\|_{\chi}$
Gabor phase retrieval:
 $X = L^2(R)$
 $q(t) = e^{-\pi \tau^2}$
 $q_{\lambda} = M_{\gamma} T_{*} q$ $(x, \gamma) = \lambda$
 $\lim_{\tau \in I^*} reconstruct f from $(|V_{\varphi}f(x_{1}y_{1})|)_{G_{Y}} e^{-t}$
 $(V_{\varphi}f(x_{1}y) = \langle f_{1}q_{1}g_{1}y_{1} \rangle)$.
Define $d_{\varphi}: L^2(R)/S^4 \rightarrow L^2(R^2, R^+)$
 $f \mapsto |V_{\varphi}f|$
 $(forward operator)$$

Injectivity:

Findamental formula:

$$\begin{aligned} \mathcal{F}\left(|V_{q}f|^{2}\right)(x,y) &= V_{1}\left([-y,x],\overline{V_{q}g}\left(-y,x\right)\right) \\ \hline \mathcal{F}\left(|V_{q}f|^{2}\right)(x,y) &= V_{1}\left([-y,x],\overline{V_{q}g}\left(-y,x\right)\right) \\ \hline \mathcal{F}\left(|V_{q}f|^{2}\right)(x,y) &= v_{1}(-y,x) \cdot V_{2}g\left(-y,x\right) \\ \hline \mathcal{F}\left(|V_{q}f_{1}|^{2}\right)(x,y) &= V_{2}f_{1}\left(-y,x\right) \cdot \frac{V_{q}g\left(-y,x\right)}{V_{q}g\left(-y,x\right)} \\ \hline \mathcal{F}\left(|V_{q}f_{2}|^{2}\right)(x,y) &= V_{2}f_{2}\left(-y,x\right) \cdot \frac{V_{q}g\left(-y,x\right)}{V_{q}g\left(-y,x\right)} \\ \hline \mathcal{F}\left(|V_{q}f_{2}|^{2}\right)(x,y) &= V_{q}f_{2}\left(-y,x\right) + V_{q}f_{2}\left(-y,x\right) \\ \hline \mathcal{F}\left(|V_{q}f_{2}|^{2}\right)(x,y) &= V_{q}f_{2}\left(-y,x\right) + V_{q}f_{2}\left(-y,x\right) \\ \hline \mathcal{F}\left(|V_{q}f_{2}|^{2}\right)(x,y) &= V_{q}f_{2}\left(-y,x\right) \\ \hline \mathcal{F}\left(|V_{q}f_{2}|^{2}\right)(x,y) &= V_{q}f_{2}\left(-y,x\right) \\ \hline \mathcal{F}\left(|V_{q}f_{2$$

[Note: formula not very useful in practice: exp. decay of Vyre]

<u>Cartinvons inverse</u>: General property of phase retrieval when measurement system is frame:

However: in practice instabilities do occur

Another general property of PR when
$$\frac{\dim X = \infty}{\dim X = \infty}$$
:
No uniform continuity of A_{φ}^{-1} :
fundamental α divit $(f_{1i}f_{2}) \stackrel{?}{\doteq} \| d_{\varphi}(f_{1}) - d_{\varphi}(f_{2}) \|_{L^{2}(\mathbb{R}^{2})} \leq \beta \operatorname{dist}(f_{1i}f_{2})$
difference to 1
linear cere!
No such $\alpha > 0$ exists! (see [1])

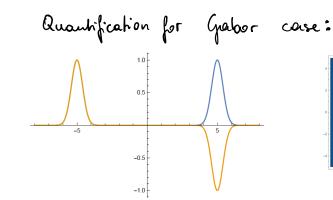
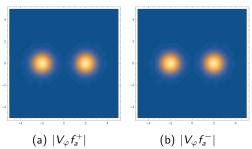
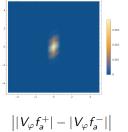


Figure 1: The functions f_a^+ (blue) and f_a^- (orange) for a = 5.

$$\int_{a}^{t} = T_{a}\varphi + T_{-a}\varphi$$
$$\int_{a}^{-} = T_{a}\varphi - T_{-a}\varphi$$





Theorem [A, groups 'A]: There is a uniform constant C>O s.t.

$$\forall a > 0 \forall k \in (0, \pi/2):$$

which $\|\|_{2^{t}}^{t} - \tau f_{a}^{-}\|_{L^{2}(\mathbb{R}^{2})} \ge C e^{ka^{2}} \|\|Vy\|_{2^{t}}^{t}\| - \|Vy\|_{2^{t}}^{t}\|\|_{L^{1,2}(\mathbb{R}^{2})}$
 \Longrightarrow apponential degradation of plability!
 $\|Seven^{"} in some sense$
 $\frac{Peopularization?}{}$
Minimizer of $\|ohe(f_{1}) - u\|_{L^{2}(\mathbb{R}^{2})}^{2} + \tau \|\|f\|\|$
 $\int wearwood data$
(lassing penalties $[e.g. L^{2}, Beson norm, modulation space norm]:$
 $\|\|f_{2^{t}}^{t}\|\| \sim \|\|f_{2}^{-}\|\|$
 \rightarrow do not revolve occuring instabolity!
Less classical approad:
 $atoll functions$ (see A., Daubednies, yobs, Ym):
change notion of solution (give up on global yhave factor) \sim stability restored

(relies heavily on holomorphy property of Vef ~> Bargmann trafo)

Image classification ~s dides